Technical Specifications

Christie LA3Si line array surround loudspeaker

System type
- Coaxial parabolic ribbon driver line array, 2-way, passive, in a single ported enclosure

Driver components
- 6 x 3.5" ribbon drivers with Kapton® diaphragm and Neodymium magnets
- 4 x 5.25" paper/Kevlar composite mid-bass cone drivers

Crossover
- Linear phase, 2-way, passive @ 1.5kHz, 24dB/octave

Frequency response
- 80Hz-20kHz @ -6dB

Maximum SPL
- 122.6dB (AES) • 134.0dB peak

System coverage
- 120° horizontal dispersion • 60° vertical dispersion

Sensitivity
- 97dB (300Hz-4kHz)

Power handling
- 500W (AES) continuous • 800W (IEC) short term

Recommended amplifier power
- 400-800W (FTC) @ 3 ohms

Rated impedance
- 3 ohms

Input connectors
- 2-position screw terminal barrier strip

Enclosure
- Ported alignment
- 18mm marine plywood
- Heavily damped and braced
- Rated for overhead applications

Mounting options
- Wall or ceiling mounted using 4 x M8 points

Accessories (optional)
- Allen Products MM-024 (111-681207-01), or MM-060 (111-682208-01) for wall mounting
- MM-3RDX-18 (111-683209-01) for ceiling mounting
- 18" Safety Cable (003-006320-01)
- 72" Safety Cable (003-006321-01)

Dimensions
- (LxWxH) 9.4 x 10.7 x 21.4" (238 x 271 x 544mm)

Net weight
- 29.8lbs (13.5kg)

Warranty
- Limited 5-year warranty

1. Measured at distances of 4m and 8m in simulated, free field and ground plane conditions. Sensitivity is calculated based on measured SPL response averaged in 300Hz-4kHz range and scaled back to 1m.

2. AES refers to AES2-2012 standard. IEC refers to IEC 60268-5 standard. Max SPL calculated based on sensitivity and power handling.

IEC short-term power tested using IEC pink noise with 9dB crest factor. The crest factor was specifically increased to reflect real-life parameters of digital cinema sound tracks. Maximum peak SPL calculated using peak voltage during IEC short-term power test.

3. Averaged in 500Hz-16kHz range, at -6dB. Screen scattering effect will result in slight increase of coverage at HF.